Что-то не так?
Пожалуйста, отключите Adblock.
Портал QRZ.RU существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений. Мы стараемся размещать только релевантную рекламу, которая будет интересна не только рекламодателям, но и нашим читателям. Отключив Adblock, вы поможете не только нам, но и себе. Спасибо.
Как добавить наш сайт в исключения AdBlockРеклама
Терморезистор - ограничитель пускового тока лампы
Пусковой ток лампы может быть ограничен на безопасном уровне, если на время разогревания ее спирали в цепь ввести токоограничительный резистор, который затем, после разогревания спирали, замкнуть. Эта же цель достигается включением последовательно с лампой элемента, имеющего отрицательный температурный коэффициент сопротивления (ТКС), Таким элементом является терморезистор, или. как его еще называют, термистор. В момент включения лампы ток в цепи будет ограничен значительным сопротивлением холодного терморезистора, который при этом быстро разогревается. После его разогревания ток лампы уже будет определять сопротивление спирали, которая к тому времени тоже разогреется и увеличит свое сопротивление (примерно в 10 раз). Следовательно, при правильно подобранных параметрах терморезистора пусковое значение тока будет снижено в несколько раз. Это предотвратит локальный перегрев "слабых" участков спирали лампы, их дальнейшее разрушение и позволит продлить срок ее службы. Уменьшатся электромагнитные помехи и другие отрицательные явления, связанные с резким изменением тока е сети. А некоторая "плавность" в нарастании освещенности, если она возникнет, скорее всего станет приятной для глаз. К терморезистору—ограничителю пускового тока лампы накаливания — предъявляется ряд очевидных требований. Во-первых, нужно следить, чтобы терморезистор нагревался и остывал за время, сравнимое с временем разогревания спирали лампы. В противном случае он не сможет эффективно ограничивать ток на всем участке быстрого увеличения температуры спирали, а также не будет ч готов к выполнению своей функции в течение некоторого времени после выключения лампы. Во-вторых, начальное сопротивление терморезистора должно позволять снизить пусковой бросок тока в момент включения лампы не менее чем в три раза, иначе защитный эффект будет незначительным, В-третьих, сопротивление нагретого термореэистора во время горения лампы не должно быть более 1 ...2% сопротивления лампы, это исключит заметное уменьшение напряжения на самой лампе, могущее привести к понижению температуры ее спирали. Известно, что световое излучение лампы имеет резкую зависимость (четвертой степени) от температуры спирали; так, пяти процентное уменьшение напряжения уменьшит, как минимум, на 20% световой поток от лампы. в-четаертых. мощность, рассеиваемая нагретым терморезистором, не должна превышать продельного значения (дли приборов из различных материалов эти значения разные). И. наконец, пятое требование — их невысокая стоимость. Из серийно выпускаемых в настоящее время терморезистооав не удалось найти прибор, полностью удовлетворяющий этим требованиям. Однако некоторые из них, например, ММТ-12 сопротивлением 680, 470 и 150 Ом, оказались пригодными для изучения переходных процессов в цепи лампы при ее включении. Эти приборы мы включали в испытательную цепь последовательно с лампой мощностью 100 Вт, питаемую от сети переменного тока напряжением 220 В. На рис, 1—3 показаны экспериментально снятые временные зависимости сопротивления с момента включения в сеть испытательной цепи терморезисторов (кривые 1) и лампы (кривые 2), а также суммарного сопротивления цепи (кривые 3). На рис. 1 для сравнения штриховой линией изображена такая же зависимость сопротивления этой же лампы в отсутствие в ее цепи терморезистора. Кривая показывает, что время полного разогревания спирали лампы равно примерно 0,3 с. Рассмотрев кривые 1 на рис, 1—3. можно заключить, что терморезисторы ММТ-12 разогреваются протекающим током за 10...80 с, т. е. время их разогревания в 30..270 раз больше, чем спирали лампы. Эти приборы обладают большой массой (1.7 г), с чем именно и связана их большая тепловая инерционность. И хотя потеря яркости лампы (из-за существенной доли падающего на разогретых терморезисторах напряжения) почти незаметна на глаз, их вряд ли можно рекомендовать для широкого применения. ![]() Графики на рис. 1—3 показывают также, что с уменьшением номинала терморезистора эффективность ограничения начального тока лампы снижается. В испытательной цепи с терморезистором сопротивлением 680 Ом ток в момент включения несколько меньше, чем в установившемся режиме, и увеличивается по мере разогревания терморезистора и спирали лампы. При терморезисторе с номиналом 470 Ом общее сопротивление и, следовательно, ток почти не изменяются, при 150 Ом ток в момент включения примерно в четыре раза превышает установившееся значение, Выходит, что низкоомные терморезисторы из серии ММТ-12 менее пригодны для ограничения начального тока лампы мощностью около 100 Вт. Однако при использовании терморезисторов этой серии сопротивлением более 1000 Ом, на них выделяется слишком большая мощность, приводящая к разрушению приборов. То же произойдет при повышении мощности лампы. С точки зрения потребляемой мощности необходим терморезистор с наименьшим сопротивлением в установившемся режиме (соответствующем конечному участку кривых 1). На низкоомном терморезисторе к тому же меньше падение напряжения.
Для кардинального уменьшения сопротивления терморезистора в нагретом состоянии перспективны, на наш взгляд, два направления работы. Первое — установка термореэистора в баллоне лампы вблизи спирали и использование для его нагревания не только джоулевого тепла, но и тепла излучения спирали лампы. Второе — создание комбинированной конструкции — совместно работающих на одном кремниевом кристалле термореэистора и симистора. В этой структуре носители заряда, генерируемые в результате разогревания зоны терморезистора, будут диффундировать в зону симистора и открывать его, а терморезистор, шунтированный cимистором, после этого остынет и не будет потреблять мощности. Авторы неизвестны
|