Исследователи из Института квантовых вычислений (Quantum Computing, IQC) университета Ватерлоо (University of Waterloo) разработали новую технологию проводки и подключения, при помощи которой можно реализовать управление сверхпроводящими квантовыми битами, кубитами. И эта технология, в совокупности с некоторыми другими технологиями, является значительным шагом на пути к разработке масштабируемых квантовых компьютеров.
Для того, чтобы иметь возможность контролировать квантовое состояние сверхпроводящих кубитов обычно используются импульсы микроволнового излучения, которые вырабатываются специализированными генераторами. Эти генераторы подключаются к криостатам, в которых при криогенной температуре находятся кубиты, сложной сетью высокочастотных кабелей. Именно сложность этой системы, плюс необходимость обеспечения ее работы как при нормальной, так и при криогенной температуре, служили препятствием для дальнейшего развития этого направления квантовой вычислительной техники.
"Разработанный нами квантовый сокет - метод подключения, в котором используются проводники на основе пружинных контактов, может обеспечить управление каждым отдельным кубитом квантового компьютера" - рассказывает Джереми Беджэнин (Jeremy Bejanin), ученый из университета Ватерлоо, - "Данная технология позволяет объединить классическую электронику с квантовыми схемами. Она является масштабируемой вплоть до уровня нескольких тысяч кубитов на кристалле единственного квантового процессора".
Созданное учеными устройство эффективно функционирует при криогенных температурах и на высоких частотах до 10 ГГц, что требуется для работы квантовых компьютеров со сверхпроводящими кубитами. Помимо этого, такой метод подключения может быть использован для управления так называемым "супер-кубитом", матрицей из нескольких сотен кубитов, которые работают как один большой логический кубит, что позволяет снизить уровень ошибок на один-два порядка. Существующий квантовый сокет может обеспечить управление матрицей 105 на 105 кубитов, что даст квантовому компьютеру мощность, достаточную для решения самых сложных задачи из области физики, химии и астрономии, которые невозможно решить при помощи традиционных компьютеров.
"Все токопроводящие элементы нашего квантового сокета предназначены для работы при сверхнизких температурах и они обладают всеми необходимыми характеристиками для работы в микроволновом диапазоне, что используется для управления сверхпроводящими кубитами" - рассказывает Маттео Мариантони (Matteo Mariantoni), профессор из университета Ватерлоо, - "Возможности нашего устройства позволяют управлять сверхпроводящими квантовыми устройствами, и это является одним из критических шагов, необходимых для создания масштабируемых квантовых вычислительных систем".