General Information

1995 CRT: 20" Door Flap: 219-A12001-XX **Main Power Button:** 292-A12001-01

Specifications

System: PAL-I Destination UK Channel Coverage UHF: 21-69 CH Frequency Range UHF: 471.25 - 855.25 MHz Scanning Lines: 625 lines Horizontal: 15625 Hz Vertical: 50 Hz IF Frequency Video: 39.5 MHz Sound: 33.5MHz Chroma: 35.07MHz Vision/Sound Separation: 6 MHz Sensitivity: UHF: 80uV Output Power: Max: 2W 10% THD: 1.5W CRT 20" (51 cm) Diagonal Speaker: 2" x 31/2" Antenna Impedance 75 ohm Power consumption: 80 Watts Power Source: 180 - 240 V Teletext Sensitivity: 100 uV

Service Adjustments

Alignment Instructions

Please Read Before Attempting Service

- Never disconnect any leads while receiver is in operation.
- 2: Disconnect all power before attempting any repairs.
- Do not short ant portion of the circuit while the power is on.
- For safety reasons, all parts replaced should be identical (for parts and part numbers see parts list).
- Before alignment the set must be preheated for 30 minutes or more to erase magnetism thoroughly from CRT front chassis frame by erase coil.

Test Equipment

- VIF Sweep Generator.
- SIF Sweep generator.
- 3. Colour Bar/Dot/Crosshatch Generator.
- 4: DC Power Supply (14V).
- Oscilloscope. Vacuum Tube Voltmeter. 6:
- Volt Ohmmeter.
- High Voltage Meter. Ampere Meter (0.5 class, DC 3mA max.).
- 10: Demagnetising Coil.
- Phillips Pattern Generator. 11.
- Frequency Counter.
- Continuous waveform Generator

Tank Coil Alignment

Preparation Step (see fig 1)

1: Connect output lead of VIF sweep

- generator between TP103 (pin 4 of IC101) and Ground.
- Connect lead of FROM DET between TP106 (pin 19 of IC101) and Ground. Apply a +14V DC across C423 (+).
- Apply a +5.2V dummy AGC bias to TP104 (pin 2 of IC101) (see fig1).

AGC BIAS SUPPLY

Fig 2.

Fig 1.

Alignment Step (see fig 3)

- Set output level to 6Vp-p.
- Adjust T104 (Tank Coil) to obtain maximum amplitude of response at 39.5 MHz as in fig 3.

Fig 3.

Fig 4.

VIF Alignment

Preparation Step (see fig 4)

- Connect output lead of VIF sweep generator between tuner test point TP and tuner case.
- Connect resistor (100 ohm) between TP109 and TP120.
- Connect lead of FROM DET between TP106 (pin 19 of IC101) and Ground. Apply a +14V DC across C423 (+).
- Apply a +5.2C DC dummy AGC bias to TP104 (pin 2 of IC101).

- Adjust AGC bias voltage for maximum amplitude of waveform
- Adjust the level of sweep generator to achieve 2Vp-p output.
- Increase the output level of sweep generator in 30dBuV
- Adjust AGC bias voltage to achieve 5Vp-p output (on oscilloscope).
- Adjust tuner converter coil to obtain the waveform as shown in fig 4.

AFC Alignment

Preparation Step (see fig 5)

(pin 2 of IC101).

- Connect the signal output of sweep/ marker generator to TP101.
- Connect the vertical input terminal of sync. oscilloscope to TP105.
- Apply a +14V DC across C423 (+). Apply a 5.2V DC to TP104

Alignment Step

- Adjust the output level of sweep generator in 30 40dB.
- Adjust waveform to 6Vp-p.
- Adjust T105 (AFC coil), for waveform as shown in fig 6.

SIF Alignment

Preparation Step (see fig 7)

- Connect output lead of SIF sweep generator between TP107 (pin 18 of IC101).
- Connect lead of FROM DET between TP108 (pin 8 of IC101).
- supply DC +14V to C423 (+)
- Connect TP104 to Ground (pin 2 of IC101).

Fig 8.

Alignment Step

- Adjust output of sweep generator to achieve 5Vp-p between markers of
- Adjust T103 so that the sound carrier is centred as in fig 8.
- Confirm the waveform as in fig 8.

Note: Input level: 90dB

Colour Demodulator Alignment, Delay Line Alignment

- Receive Phillips pattern.
- Set contrast control to minimum position.
- Set colour control to maximum
- Connect oscilloscope to TP301 (B-out). 5: Adjust CT301 to obtain the waveform as
- Adjust VR305 to obtain the waveform as in fig 9.
- 7: Adjust T301 to obtain the waveform as in

B+ Adjustment

- Connect the digital voltmeter to TP901.
- Adjust semi-fixed resistor VR901 until meter reading DC 115V.

Vertical Circuit Adjustment

- Without RF input signal, connect the frequency counter between V-Deflection Yoke and Ground.
- Adjust V-Hold (VR303) to the reading 44H7
- Receive a mnonoscope pattern.
- Adjust V-Size (VR401) control to obtain a normal picture.

Horizontal Circuit Adjustment

- Receive monoscope pattern input signal
- IC301 (pin 28, 29) short by 1K ohm
- Adjust VR302 to obtain the picture running at centre.
- Remove the 1K ohm resistor. Adjust VR301 to change the horizontal of the pattern for centre.

Teletext Picture Alignment

- Receive a pattern with a teletext signal 2: 3: Select a teletext page.
- Connect an oscilloscope to TP801.
- Without the RF signal. Adjust T801 to obtain the TV horizontal
- Exactly the same as teletext sync. as shown in fig 10.

Fig 10.

White Balance Adjustment

- Receive a monoscope pattern picture signal.
- Turn the red, green and blue LOW LIGHT (VR501, VR502, VR503) controls to middle position and turn the DRIVE (VR504, VR505) control to middle
- Turn the screen control on the FBT to minimum position.
- Set the sub-brightness (VR304) control to middle position, then set the contrast
- and colour control to minimum position. Connect voltmeter to the emitter of Q505 to Ground and adjust subbrightness control to the reading of DC 1 4V
- Set the service (S401) to "SERVICE" position
- Slowly turn the screen control clockwise to the point where a horizontal line just
- Adjust VR501 to get a red horizontal line on CRT
- 9: Adjust VR502 to get a yellow horizontal line on CRT. Adjust VR503 to get a white horizontal
- line on CRT. Reset the service switch (\$401) to normal position and turn brightness
- control to middle position. Adjust DRIVE (VR504, VR505) control to obtain a uniform white picture

Focus Adjustment

- Set contrast control to maximum position and brightness control to
- middle position Adjust focus control (on the FBT) to obtain the sharpest picture on the CRT.

RF AGC

- Connect a TV signal (471.25 MHz. 60dB) from centre system to the tuner.
- A digital voltmeter is connected to the AGC terminal of tuner (pin 4).
- Adjust VR101 until the voltmeter reads 4.8V.

Sub-Brightness Alignment

- Receive a monoscope pattern.
- Set controls as follows: Brightness: MIN. position. Contrast: MIN. position. Colour: MIN. position.
- Adjust Sub-Brightness (VR304) control until light just appears on the screen.

Colour Purity Adjustment (see fig. 12)

Before all adjustments described below are attempted, V-Hold, H-Hold, V-High, B+ Voltage and Focusing Adjustment must be completed.

- Place the TV receiver facing North or South. Plug in the receiver and turn it on. Operate the TV receiver for over
- 30 minutes Fully degauss the TV receiver by using
- an external degaussing coil. Receive a crosshatch pattern and adjust the static convergence control roughly.
 - Loosen the clamp screw of the deflection voke and pull the deflection voke towards you.
- Fully turn the red and blue drive (VR503, VR505) controls counter-clockwise.
- Adjust the purity magnets so that green field is obtained at the centre of the screen
- Slowly push the deflection yoke towards bell of CRT and set it where a uniform green field is obtained.
- Tighten the clamp screw of the deflection yoke.

On Screen Adjustment (see fig 11)

- Receive the monoscope pattern.
- Adjust On Screen (VR601) for adjust the lettering to centre of CRT.

Fig 11.

Convergence Adjustment (see fig 12)

- Receive a crosshatch pattern. Unfix the convergence magnet clamper and align red with blue dots at the centre of the screen by rotating (R, B) static
- convergence magnets. Align red/blue with green dots at the centre of the screen by rotating (R, B)
- static convergence magnets. Fix the convergence magnets by turning
- the clamper. Remove the DY wedges and slightly tilt the deflection yoke horizontally and vertically to obtain good overall
- convergence. Fix the deflection yoke by wedges.
- If purity error is found, follow "Purity Adjustment" instructions

Fig 12.

