LAB599.RU — интернет-магазин средств связи
EN FR DE CN JP
QRZ.RU > Каталог схем и документации > Схемы наших читателей > Простой индикатор-сигнализатор радиоактивности (СБМ20, CD4001)

Простой индикатор-сигнализатор радиоактивности (СБМ20, CD4001)

Индикатор предназначен для сигнализации о радиоактивности. Он не является измерительным прибором, показывающимуровень радиоактивности, он только предупреждает о его повышении, издавая звуковой и световой сигнал при каждом пролете радиоактивной частицы сквозь датчик - счетчик Гейгера. Здесь работает счетчик СБМ-20.

По его паспортным данным получается, что при нормальной естественной радиации должно быть не более 15-20 писков - вспышек в минуту. Если прибор пищит и вспыхивает чаще при приближении к некоторому месту или предмету, это говорит о зараженности данного места или предмета. Переход на постоянный писк говорит о существенном превышении. Как уже сказано, это не измерительный прибор, а индикатор, поэтому определить по нему значение радиоактивного уровня не возможно. Только узнать что здесь радиация выше, а здесь ниже, а здесь очень много.

Для работы счетчика Гейгера нужно чтобы на его выводы через токоограничительный резистор поступало постоянное напряжение 400V.

Обычно в схемах дозиметров и индикаторов радиоактивности применяют для питания счетчиков Гейгера источники на основе однотранзисторного блокинг-генератора. Конечно, такая схема проста, но у неё есть и недостатки - практически полное отсутствие стабилизации выходного напряжения, которое поступает на анод счетчика Гейгера.

А ведь чувствительность счетчика Гейгера напрямую зависит от напряжения между его электродами. Кроме того, есть трудности с налаживанием схемы источника высокого напряжения, потому что выходное напряжение никак не регулируется, и если его величина не соответствует необходимой, приходится перематывать вторичную обмотку импульсного трансформатора.

Принципиальная схема

Поэтому здесь источник питания счетчика Гейгера сделан на схеме повышающего DC/DC преобразователя напряжения с широтно-импульсной модуляцией, обеспечивающей регулировку выходного напряжения и его поддержание стабильным, на микросхеме МС34063 с трансформаторным выходом. Почти по типовой схеме её включения.

Интересно то, что микросхема будет поддерживать выходное напряжение 400V стабильным при значительном изменении питающего напряжения. Именно по этому данную схему индикатора радиоактивности можно питать любым постоянным напряжением в пределах от 5 до 15V. То есть, источником питания может быть и USB-порт персонального компьютера или зарядного устройства для сотовых телефонов, и напряжение 13V с разъема прикуривателя автомобиля.

Принципиальная схема индикатора-сигнализатора радиоактивности на основе датчика СБМ20

Рис. 1. Принципиальная схема индикатора-сигнализатора радиоактивности на основе датчика СБМ20.

При этом чувствительность к радиации меняться не будет, что особенно важно в полевых или рабочих условиях.

Принцип работы МС34063 многократно описан в различной литературе, и останавливаться здесь на нем нет смысла. Напомню, что стабилизация осуществляется подачей пониженного резистивным делителем напряжения с выхода на компараторный вход микросхемы (на вывод 5). И от соотношения плеч этого делителя напряжения как раз и зависит величина выходного напряжения. Здесь делитель образован резисторами R3 и R1. А выходное напряжение 400V выставляется подстроечным резистором R1.

Напряжение 400V поступает на счетчик Гейгера U1 через токоограничительный резистор R5. Этот резистор нужен потому, что в ждущем состоянии сопротивление счетчика Гейгера стремится к бесконечности. Но при пролете сквозь него заряженной частицы происходит его короткий пробой, во время которого его сопротивление низко.

Нагрузкой счетчика Гейгера U1 служит резистор R6. В ждущем состоянии напряжение на нем низко, фактически на уровне логического нуля. Но при пролете сквозь U1 заряженной частицы напряжение резко возрастает, и величину его роста ограничивает только диод VD2, который не допускает его рост выше напряжения питания, плюс прямое падение на этом диоде.

В принципе, в диоде VD2 нет необходимости, потому что у микросхем серии CD40 или аналогов есть такие диоды, включенные между входами и шиной питания. Так что VD2 здесь на всякий случай.

Импульсы на счетчике Гейгера очень короткие. Если непосредственно их подать на звукоизлучатель (такие схемы бывают) звуки будут очень короткие, как одиночные щелчки, и не все из них будут достаточно хорошо слышимы. Что же касается светодиода, его мигание в таком случае вообще будет незаметно.

Чтобы информация более хорошо воспринималась органами чувств человека нужно длительность импульса растянуть, увеличить до некоторого оптимального размера. Этим здесь занимается микросхема D1 типа CD4001, на которой сделано два одно-вибратора.

Первый одновибратор на элементах D1.1 и D1.2 работает на озвучивание работы счетчика Гейгера. При возникновении импульса в U1, он поступает на вывод 1 D1.1 и схема на D1.1 и D1.2 формирует импульс, длительность которого определена RC-цепью R7-C4. Этот импульс значительно длиннее входного.

Он поступает на базу VТ1 и далее через усилитель тока на VТ1 на звукоизлучатель со встроенным генератором BF1. Раздается четко слышимый писк, а не короткий едва различимый щелчок.

Аналогично работает одновибратор на элементах D1.3 и D1.4. Но он формирует в десять раз более длительный импульс, потому что инерционность зрения человека куда более, чем слуха. Длительность этого импульса задана RC-цепью C5-R8. Импульс поступает на VТ2, в коллекторной цепи которого включен индикаторный светодиод HL1 типа АЛ307 (это может быть практически любой индикаторный светодиод).

Трансформатор Т1 намотан на ферритовом кольце внешним диаметром 28 мм (можно больше или меньше, где-то от 20 до 30 мм). Первичная обмотка - 20 витков провода ПЭВ 0,43. Вторичная обмотка - 400 витков провода ПЭВ 0,12. Сначала наматывают вторичную обмотку, потом на неё - первичную.

Между обмотками проложить тонкую фторопластовую изоляцию (например, размотанную с провода МГТФ).

Налаживание

Налаживание требуется только источнику напряжения 400V.

Устанавливаем R1 в верхнее по схеме положение. Включаем питание. Если источник не заработал сразу - поменять местами выводы одной из обмоток трансформатора.

Затем, подключаем мультиметр к крайним выводами резистора R1 и поворачивая его ползунок устанавливаем напряжение 2,65V. При наличии высокоомного вольтметра можно измерить напряжение непосредственно на выходе, на СЗ, должно быть 400V.

Солонин В. РК-2016-03.

Партнеры